8 research outputs found

    Acc homoeoloci and the evolution of wheat genomes

    No full text
    The DNA sequences of wheat Acc-1 and Acc-2 loci, encoding the plastid and cytosolic forms of the enzyme acetyl-CoA carboxylase, were analyzed with a view to understanding the evolution of these genes and the origin of the three genomes in modern hexaploid wheat. Acc-1 and Acc-2 loci from each of the wheats Triticum urartu (A genome), Aegilops tauschii (D genome), Triticum turgidum (AB genome), and Triticum aestivum (ABD genome), as well as two Acc-2-related pseudogenes from T. urartu were sequenced. The 2.3–2.4 Mya divergence time calculated here for the three homoeologous chromosomes, on the basis of coding and intron sequences of the Acc-1 genes, is at the low end of other estimates. Our clock was calibrated by using 60 Mya for the divergence between wheat and maize. On the same time scale, wheat and barley diverged 11.6 Mya, based on sequences of Acc and other genes. The regions flanking the Acc genes are not conserved among the A, B, and D genomes. They are conserved when comparing homoeologous genomes of diploid, tetraploid, and hexaploid wheats. Substitution rates in intergenic regions consisting primarily of repetitive sequences vary substantially along the loci and on average are 3.5-fold higher than the Acc intron substitution rates. The composition of the Acc homoeoloci suggests haplotype divergence exceeding in some cases 0.5 Mya. Such variation might result in a significant overestimate of the time since tetraploid wheat formation, which occurred no more than 0.5 Mya

    Spatial Correspondence Between Intraretinal Fluid, Subretinal Fluid, and Pigment Epithelial Detachment in Neovascular Age-Related Macular Degeneration

    No full text
    Purpose: To identify the spatial distribution of exudative features of choroidal neovascularization in neovascular age-related macular degeneration (nAMD) based on the localization of intraretinal cystoid fluid (IRC), subretinal fluid (SRF), and pigment-epithelial detachment (PED). Methods: This retrospective cross-sectional study included spectral-domain optical coherence tomography volume scans (6 6 mm) of 1341 patients with treatment-naïve nAMD. IRC, SRF, and PED were detected on a per-voxel basis using fully automated segmentation algorithms. Two subsets of 37 volumes each were manually segmented to validate the automated results. The spatial correspondence of components was quantified by computing proportions of IRC-, SRF-, or PED-presenting A-scans simultaneously affected by the respective other pathomorphologic components on a per-patient basis. The median across the population is reported. Odds ratios between pairs of lesions were calculated and tested for significance pixel wise. Results: Automated image segmentation was successful in 1182 optical coherence tomography volumes, yielding more than 61 million A-scans for analysis. Overall, 81% of eyes showed IRC, 95% showed SRF, and 92% showed PED. IRC-presenting A-scans also showed SRF in a median 2.5%, PED in 32.9%. Of the SRF-presenting A-scans, 0.3% demonstrated IRC, 1.4% PED. Of the PED-presenting A-scans, 5.2% contained IRC, 2.0% SRF. Similar patterns were observed in the manually segmented subsets and via pixel-wise odds ratio analysis. Conclusions: Automated analyses of large-scale datasets in a cross-sectional study of 1182 patients with active treatment-naïve nAMD demonstrated low spatial correlation of SRF with IRC and PED in contrast to increased colocalization of IRC and PED. These morphological associations may contribute to our understanding of functional deficits in nAMD.(VLID)484314

    Single-copy gene fluorescence in situ hybridization and genome analysis: Acc-2 loci mark evolutionary chromosomal rearrangements in wheat

    Get PDF
    Citation: Danilova, T. V., Friebe, B., & Gill, B. S. (2012). Single-copy gene fluorescence in situ hybridization and genome analysis: Acc-2 loci mark evolutionary chromosomal rearrangements in wheat. Retrieved from http://krex.ksu.eduFluorescent in situ hybridization (FISH) is a useful tool for physical mapping of chromosomes and studying evolutionary chromosome rearrangements. Here we report a robust method for single-copy gene FISH for wheat. FISH probes were developed from cDNA of cytosolic acetyl-CoA carboxylase gene (Acc-2) and mapped on chromosomes of bread wheat, Triticum aestivum L. (2n=6x=42, AABBDD), and related diploid and tetraploid species. Another nine full-length cDNA FISH probes were mapped and used to identify chromosomes of wheat species. The Acc-2 probe was detected on the long arms of each of the homoeologous group-3 chromosomes (3A, 3B, and 3D), on 5DL and 4AL of bread wheat, and on homoeologous and nonhomoeologous chromosomes of other species. In the species tested, FISH detected more Acc-2 gene or pseudogene sites than previously found by PCR and Southern hybridization analysis and showed presence/absence polymorphism of Acc-2 sequences. FISH with the Acc-2 probe revealed the 4A-5A translocation, shared by several related diploid and polyploid species and inherited from an ancestral A-genome species, and the T. timopheevii specific 4A[superscript t]-3A[superscript t] translocation
    corecore